Journal of Organometallic Chemistry, 385 (1990) 207–219 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20497

Thermolysis of trifluoromethylsilanes. Novel fluoromethylsilanes by insertion of CF_2 and CHF into Si-H bonds

H. Beckers and H. Bürger

Anorganische Chemie, Fachbereich 9, Universität-Gesamthochschule, D-5600 Wuppertal (F.R.G.) (Received September 20th, 1989)

Abstract

The thermal decomposition in the gas phase of CF_3SiH_3 and $(CF_3)_2SiH_2$ begins at ~ 200 and ~ 100 °C, respectively. It is catalyzed by KF, and involves as initial step a clean CF_2 elimination with an α -fluorine shift. Reactive species such as HBr trap CF₂ quantitatively (to give in this case CHF₂Br), while addition to the less reactive cyclohexene (to give 7,7-difluorobicycloheptane) is accompanied by secondary reactions. These dominate in the absence of an efficient CF_2 trapping agent, and spectroscopic product analyses reveal that they mainly arise from insertion of the carbones CH_nF_{2-n} into Si-H bonds followed by $CH_{n+1}F_{1-n}$ elimination (n = 0, 1). This sequence corresponds to H/F exchange at the Si atom. Insertion of CF_2 (generated by thermolysis of CF_3SiF_3 below 100 °C) into an Si-H bond of H_3SiF to give CHF,SiH,F in good yield is the first example of such a reaction and demonstrates its usefulness for the selective synthesis of CHF₂Si compounds. In addition, some dismutation of SiH_nF_{3-n} moieties accompanies the carbene elimination/ insertion reactions and the resulting novel fluoromethylsilanes were characterized by ¹H and ¹⁹F NMR and (in part) IR spectroscopy. The synthesis of $(CF_3)_2$ SiHBr by cleavage of (CF₃)₂Si(H)N(i-Pr)₂ with BBr₃ and its conversion with LiAlH₄ to $(CF_3)_2SiH_2$ are reported. The mechanism of the CF_2/SiH insertion reaction is discussed.

Introduction

The development of trifluoromethylsilicon chemistry was delayed by the difficulties associated with the formation of Si-CF₃ bonds. Sharp and Coyle [1] prepared the first such compound by inserting the short-lived SiF₂ into a C-I bond, but recently more general routes have become available which involve nucleophilic trifluoromethylation with the reagents $(Et_2N)_3P/CF_3Br$ [2-4] and $(Me_2N)_2C=C-(NMe_2)_2/CF_3I$ [5]. The applicability of the nucleophilic trifluoromethylation of electropositive main group elements such as Si is, however, severely curtailed by the ease of formation and oligomerization of CF_2 as well as the strength of the concomitantly formed element-fluorine bond, effects which strongly favour thermal decomposition of the desired products. Thus, the silicon compounds belong to the family of trifluoromethyl derivatives of electropositive elements which are generally regarded as convenient sources of CF_2 [6–8]; they are mostly used in solution, but reactions in the gas phase have been reported [9]. Thermal decomposition of CF_3SiF_3 (I), which has a lifetime of ca. 7 min at 100 °C in the gas phase, yields SiF_4 and CF_2 quantitatively, the latter oligomerizing in the absence of suitable trapping agents to C_2F_4 and cyclo- C_3F_6 [10].

Although CF_2 is a powerful insertion reagent, to our knowledge no such insertions have been reported for Si-H [10], Si-F, Si-Cl and Si-Br bonds [11,12]. On the other hand, CF_2 is known to insert into Si-Si [13] and Si-O bonds [14], as well as into Ge-H and Sn-H bonds, with formation of GeCHF₂ [15] and SnCHF₂ compounds [6]. Insertion of plasma-generated CF_2 into Si-H bonds probably plays an important role in the production by chemical vapour deposition of amorphous Si:C(H,F) alloy films that show promising properties as photosensitive diodes [16].

The thermal decomposition of CF_3SiH_3 (II) is reported to start at ca. 180 °C. In the absence of carbene trapping agents, H_2SiF_2 and $HSiF_3$ were formed [17]. These cannot be primary decomposition products but must come from secondary reactions. In order to identify these secondary reactions, we have investigated the thermal decomposition of II and $(CF_3)_2SiH_2$ (III) in the gas phase, in the absence and in the presence of various carbene trapping agents. We have also studied the secondary reactions of II with CF_2 generated from I under mild conditions, and the results are reported below.

Thermal decomposition of CF₃SiH₃

Primary products

The composition of the products obtained by thermolysis of 11 depends greatly on the conditions employed. While numerous volatile species are obtained at elevated temperature and pressure (see below), a simple and clean decomposition is observed in the presence of an efficient CF_2 trapping agent or at low pressure under collision-free conditions, C_2F_4 then being formed by dimerization of CF_2 . The process may be represented as an elimination of CF_2 according to eq. 1:

$$F_{2}C - SiH_{3} \xrightarrow{300^{\circ}C, 10^{-3} \text{ mbar}} \{CF_{2}\} + FSiH_{3}$$

$$F$$

$$2 CF_{2} \xrightarrow{\text{fast}} C_{2}F_{4}$$
(1)

However, even at 300 °C the decomposition of II in a flow experiment was incomplete, and at 10^{-3} mbar more than 95% was recovered. The decomposition is strongly accelerated by KF, more than 95% being decomposed at 160 °C under otherwise similar conditions. The near quantitative formation of H₃SiF rules out the elimination of HF according to eq. 3.

$$F_3C - SiH_3 \xrightarrow{Kr} HF + F_2C = SiH_2$$
(3)

Conditions of thermolysis	1.4 mmol II	1.4 mmol II
	6.8 mmol $C_6 H_{10}$	7.0 mmol HBr
	5 h, 210°C, 3 bar	5.3 h, 210°C, 3 bar
Decomposition (%)	95	100
Volatile thermolysis products	H ₃ SiF (51)	H ₃ SiF (35)
(mol%)	H_2SiF_2 (47)	H_3 SiBr (13)
		CHF ₂ Br (50)
	traces: HSiF ₃ , SiF ₄ , HCF ₃	$HSiF_3$, SiF_4 (2)
Less volatile products	F F H	
	FHHF	
	1 / 0.52 / 0.65	

Table 1 Thermolysis of CF_3SiH_3 (II) in the presence of cyclohexane and HBr

The reaction products similarly rule out as the initial step both a decomposition according to eq. 4

$$\begin{array}{c} H \\ \downarrow \\ F_3C \longrightarrow SiH_2 \longrightarrow HCF_3 + \{SiH_2\} \end{array}$$

$$(4)$$

as well as a homolytic fission of the C-Si bond according to eq. 5.

$$F_3C - SiH_3 \longrightarrow F_3C \cdot + \cdot SiH_3$$
(5)

When II and an excess of HBr, an efficient CF_2 trap [18], were heated together at 210 °C in a glass cylinder at a pressure of 3 bar for 6 h, CHF_2Br was quantitatively formed and various silane derivatives were identified in the gaseous thermolysis products (Table 1), which were made up of 70% of H₃SiF, 26% of H₃SiBr and 4% of (SiF₄ + HSiF₃). We confirmed independently that H₃SiBr is formed from H₃SiF and HBr under these conditions.

Thermolysis of II in the presence of the carbene trapping agent cyclohexene under the same conditions is less specific (Table 1). Approximately half of the reaction products, H_3SiF and 7,7-difluorobicycloheptane [4.1.0], are formed by a process similar to that mentioned above, eq. 6:

$$II + \longrightarrow H_3 SiF + \bigcirc F$$
(6)

The other products arise from secondary reactions, eqs. 7 and 8,

$$CF_2 + H_3SiF \longrightarrow CHF + H_2SiF_2 \tag{7}$$

$$CHF + \bigcirc \longrightarrow \bigcirc H + \bigcirc F (4/5)$$
(8)

the formation of endo- and exo-7-fluorobicycloheptane[4.1.0] proving the occurrence of monofluorocarbene CHF as intermediate [19]. No other products were observed, except for traces of $HSiF_3$, SiF_4 and HCF_3 (Table 1). Evidently, secondary reactions of CF_2 with H_3SiF compete with the trapping of CF_2 by the olefin, which is apparently a slower process than trapping by HBr [18,20].

Thermal decomposition of II: secondary products

In order to throw light on the mechanism of formation of the secondary products, we thermally decomposed II completely at pressures of 0.2 and 40 bar, Table 2. In qualitative terms the product distribution is fairly independent of the pressure and temperature although under more vigorous conditions the products undergo substantial subsequent decomposition. In contrast to the flow experiment, neither H_3SiF nor C_2F_4 were observed among the products. H_2SiF_2 , which is a major product at lower pressure, was absent at higher pressure, while substantial amounts of $HSiF_3$ were identified in both experiments. No SiF_4 was found. In an independent experiment we confirmed that H_3SiF does not decompose under the thermolysis conditions and so the H_2SiF_2 and $HSiF_3$ must be formed by complex processes; e.g. as in eqs. 7 and 9.

$$H_2SiF_2 + CF_2 \longrightarrow HSiF_3 + CHF$$
 (9a)

$$H_2SiF_2 + CHF \longrightarrow HSiF_3 + CH_2$$
(9b)

Only small amounts of the CF_2 oligomer cyclo- C_3F_6 were found, and no C_2F_4 or other fluorocarbons were detected.

All other products, which were fully characterized by NMR and, in part, vibrational spectroscopy (see below), can be interpreted in terms of insertion of CHF and CH_2 into the Si-H bonds of H_2SiF_2 and $HSiF_3$. Inspection of Table 2 reveals that CH_3Si species resulting from CH_2 insertion are more abundant at higher pressure and temperature. The insertion of CH_3 into Si-H bonds has been

Table 2

Thermolysis of CF₃SiH₃ (II)

Conditions of thermolysis	0.5 mmol II 15 h, 210°C, 200 mbar (5 h, 180°C, 200 mbar)	0.9 mmol II 6 h, 240 ° C, 40 bar	2.4 mmol II 300 ° C, 10^{-3} mbar flow system	0.9 mmol II 160 ° C, 10^{-3} mbar flow over KF
Decomposition (%)	100 (5-10)	97	34	95
Volatile products identified	(mol%)			
H ₃ SiF			67	63
H ₂ SiF ₂	29.4			
CH ₂ FSiHF ₂	17.6	3.7		
(CH ₂ F)CH ₃ SiF ₂		16.6		
CH ₃ SiHF ₂	7.4	19.2		
$(CH_3)_2SiF_2$		2.2		
HSiF ₃	17.6	19.2		
CH ₂ FSiF ₃	14.7	20.4		
CH ₃ SiF ₃	5.9	9.4		
HCF ₃	4.4	0.7		
C_2F_4			33	35
cyclo-C ₃ F ₆	1.5	2.1		SiH ₄ 2

reported to be one of the fastest reactions of methylene [21-23], whereas to our knowledge, insertion of CHF into Si-H bonds has not yet been observed.

More vigorous conditions increase the proportion of CH_2 -insertion products at the expense of those from CHF. This is in agreement with a stepwise increase in thermal stability on going from CF_3SiH_3 to CH_3SiF_3 in the sequence shown in eq. 10.

II
$$\longrightarrow$$
 CF₂ + H₃SiF \longrightarrow CHF₂SiH₂F \longrightarrow CHF + H₂SiF₂ \longrightarrow
CH₂FSiHF₂ \longrightarrow CH₂ + HSiF₃ \longrightarrow CH₃SiF₃ (10)

Since we could not detect CHF_2SiH_2F (IV), or any other product which could have come directly from insertion of CF_2 into H_3SiF , we generated CF_2 by low temperature thermolysis at $\leq 100 \,^{\circ}C$ of I according to eq. 11 in the presence of $CF_3SiF_3 \xrightarrow{\leq 100 \,^{\circ}C} CF_2 \xrightarrow{H_3SiF} CHF_2SiH_2F$ (11)

 H_3SiF . Under these conditions the expected insertion product IV should be sufficiently stable to allow its detection or even isolation. The gas phase thermolysis ≤ 100 °C of I in the presence of H_3SiF indeed yielded ≥ 63% IV, along with ≤ 1% C_2F_4 and traces of CHF₂SiHF₂ and CHF₂SiF₃, the insertion products of CF₂ with H_2SiF_2 and HSiF₃ being formed as shown in the sequence in eq. 10. This is the first unambiguous proof that CF₂, which is considerably less reactive than CHF and CH₂, does in fact insert into Si-H bonds. It is known that CF₂ does not insert into the Si-H bonds of either (CH₃)₃SiH [10] or II upon co-thermolization with I in the gas phase below 100 °C, C_2F_4 and cyclo- C_3F_6 being the only detectable products arising from the elimination of CF₂.

Our failure to detect any of the species IV in the course of the decomposition of II suggests that IV undergoes thermolysis at least as readily as II. In order to substantiate this we co-thermolyzed a 50/50 mixture of II and IV for 1 h at 120 and 150° C and monitored the reaction by ¹⁹F NMR spectroscopy. At 120° , II acts only as a solvent, whereas IV undergoes almost quantitative dismutation according to eq. 12.

$$3CHF_2SiH_2F \longrightarrow 2CHF_2SiH_3 + CHF_2SiF_3$$
(12)

The co-thermolysis experiment performed at 150 °C yielded, along with CHF_2SiH_3 , the decomposition products of CHF_2SiHF_2 , namely $HSiF_3$ and CHF trapped by insertion into II ($\rightarrow CF_3(CH_2F)SiH_2$), $HSiF_3$ ($\rightarrow CH_2FSiF_3$) and CHF_2SiH_3 ($\rightarrow CHF_2(CH_2F)SiH_2$). The silane CHF_2SiHF_2 is likely to be an intermediate in the reaction represented by eq. 12. Thus it is almost certain that all the steps of the observed hydrogen/fluorine exchange involve either an elimination/insertion process or dismutation.

Thermal decomposition of (CF₃)₂SiH₂

The thermal stability of trifluoromethylsilanes $(CF_3)_n SiX_{4-n}$ decreases as the eletronegativity of the X atom and the number *n* of the CF₃ groups bonded to silicon are increased. This behaviour is in line with that reported for 2,2-di-fluoroethylsilanes CHF₂CH₂SiX₃ [24] and perfluoroether derivatives $(R_f-O-R_f)_n$ SiMe_{4-n} [25]. In spite of the lower temperature the decomposition of III proceeds in

Conditions of thermolysis Decomposition (%)	0.5 mmol III 1 h, 99 ° C, 14 bar 5	0.5 mmol III 30 min, 210 ° C, 14 bar 100	Co-thermolysis with cyclohexene 1 mmol III/ 1 mmol C_6H_{10} 30 min, 110 ° C ^{<i>a</i>} 60	Co-thermolysis with HBr 1 mmol III/ 2 mmol HBr 92 min, 123° C, 1.4 bar 66
Volatile products of therm	olysis (mol%)			
CF ₃ SiH ₂ F	4		32	38
CHF ₂ (CF ₃)SiH ₂	4		14	
H ₂ SiF ₂	2	3	6	7
CHF ₂ SiHF ₂	28		31	
CHF ₂ SiF ₃	15		4	
HSiF ₃	2	11		
SiF ₄	<1	5		
CH ₂ FSiF ₃		32		CHF ₂ Br 55
CH ₂ FSiHF ₂		8		
$(CH_2F)_2SiF_2$		7		
C_2F_4	3	5	4	
cyclo-C ₃ F ₆	17	22	4	

Table 3

Thermolysis of (CF₃)₂SiH₂ (III)

⁴ 7,7-difluorobicyloheptane[4.1.0] identified as less-volatile material.

an analogous way to that outlined above for II although the CF_2 insertion products CHF_2SiHF_2 and CHF_2SiF_3 are now present in the complex mixture of decomposition products, the CHF_2SiF_3 appearing when the thermolysis is taken to completeness at high temperature (Table 3). Above 150 °C, the CHF_2Si derivatives slowly decomposed to yield CH_2FSiF_3 and eventually SiF_4 , whereas only $HSiF_3$ and SiF_4 were observed from thermolysis at or above 200 °C. The primary product of the thermal decomposition beginning at about 100 °C is CF_3SiH_2F , which can be isolated if the concomitantly eliminated CF_2 is trapped with cyclohexene or HBr, Table 3, eq. 13.

$$(CF_3)_2SiH_2 \xrightarrow{\geq 100^{\circ}} \{CF_2\} + CF_3SiH_2F$$
(13)

 CF_3SiH_2F slowly decomposes at ~ 120 °C with further elimination of CF_2 to yield H_2SiF_2 . The rate of the insertion of CF_2 into an Si-H bond and that of its addition to cyclohexene are comparable under these conditions. In contrast with the behaviour of II, no 7-fluorobicycloheptane[4.1.0] was formed when III was thermolyzed at 110 °C in the presence of cyclohexene. At room temperature the liquefied thermolysis products of II and III react, presumably by SiH/SiF dismutation processes according to eq. 12, to form novel hydrogen-rich fluoromethylsilanes, e.g. CH_2FSiH_3 and $(CH_2F)_2SiH_2$ from II and $(CHF_2)_2SiH_2$ and CH_2FSiH_3 (traces) from III respectively. Their ¹⁹F NMR signals have diagnostic high frequency shifts, with large vicinal FCSiH coupling constants, and appear as singlets in the proton-decoupled spectra.

NMR spectra of the decomposition products

Products arising from the thermal decomposition of II and III were identified by means of their ¹H and ¹⁹F NMR chemical shifts, and the nature of the observed

multiplets and by decoupling experiments. The NMR data are listed in Table 4. In general, fluoromethylfluorosilanes with X_2CSiX_2 units, X = H or F, possess magnetically non-equivalent geminal F and H nuclei which give rise to two different vicinal couplings. Frequently only mean constants can be derived, as is expected e.g. for species containing an $F_2CSi(H,F)_2$ unit, with $|^2J(FCF)| \approx 340$ Hz $[26] \gg |^3J(FH, FF) - ^3J(FH',FF')|$ [27].

An AA'XX' spin system is however shown by $(CH_2F)(CH_3)SiF_2$, the simulation of which $(M_3AA'XX'Y system)$ yielded $|{}^2J(AA')| = 23.3$ Hz and $|{}^2J(XX')| = 21.4$ Hz. Although an assignment of AA' and XX' to FSiF' and HCH' could not be made, the values may be compared with the previously reported FSiF' coupling constant of +21 Hz for RR'SiF_ species [28], while the sign of ${}^2J(HCH')$ is probably negative [29]. The ¹H and ¹⁹F chemical shifts for the $CH_{3-n}F_n$ groups in α -fluoroalkylsilanes $(CH_{3-n}F_n)SiX_3$, n = 1-3, depend on n in a specific fashion. Thus, the ¹⁹F signal reveals a systematic high frequency shift from -265.0 ppm $(CH_2FSiH_3, n = 1)$ and -128.9 ppm $(CHF_2SiH_3, n = 2)$ to -55.2 ppm $(CF_3SiH_3, n = 3)$, while the geminal FCH coupling constants are less affected, with $|{}^2J(FCH_2)| > |{}^2J(F_2CH)|$. On the other hand, $|{}^2J(HSiF)|$ is smaller in CH_3SiH_2F (48.8 Hz) than in CH_3SiHF_2 (67.5 Hz) [29]. The vicinal FCSiF coupling constants for the fluoromethylfluorosilanes, Table 4, are smaller than those for I, namely 11.0 Hz [10], with a positive sign [30], and likewise $|{}^3J(HCSiH)|$ is smaller than for CH_3SiH_3 (4.7 Hz [31]).

The $|{}^{3}J(\text{HF})|$ coupling constants decrease with increasing fluorination of both the Si and the C atoms. Thus, the largest $|{}^{3}J(\text{FCSiH})|$ and $|{}^{3}J(\text{HCSiF})|$ constants for fluorinated methylsilanes are observed for CH₂FSiH₃ (14.7 Hz) and CH₃SiH₂F (8.3 Hz [29]), respectively. Four-bond FF and HF coupling, with $|{}^{4}J(\text{FF})| \gg$ $|{}^{4}J(\text{HF})|$ [32–34], was resolved for bis(fluoromethyl) derivatives. Because of this coupling, the H(C) signals of (CHF₂)₂SiH₂ are split into a complex multiplet, while the H(Si) resonance, with a mean vicinal $|{}^{3}J(\text{HF})|$ constant of 9.3 Hz and $|{}^{3}J(\text{HH})| = 1.8$ Hz, reveals a first order multiplet structure. Accordingly the ¹⁹F signal consists, in essence, of a doublet of triplets ($N = |{}^{2}J(\text{FH}) + {}^{4}J(\text{FH}')| = 45.9$ Hz) accompanied by two ab-type systems ($L = |{}^{2}J(\text{FH}) - {}^{4}J(\text{FH}')| = 45.1$ Hz) that can be approximated by an (AA'X)₂M₂ system with $|{}^{4}J(\text{FF})| = 3.7$ Hz, $|{}^{4}J(\text{FF}')|$ = 2.1 Hz and $|{}^{4}J(\text{HH}')| \approx 0$ Hz. For (CH₂F)₂SiH₂ the low intensity of the ¹⁹F signals only allows identification of the most intense subsystem with a first order splitting ($N = |{}^{2}J(\text{FH}) + {}^{4}J(\text{FH}')| = 46.9$ Hz).

Discussion

The decomposition mechanism established for II and III and the fall in thermal stability in the order II > III > I are consistent with results of kinetic investigations of α -fluoroalkylsilanes by Haszeldine et al. [35,36]. They reported a unimolecular decomposition with carbene elimination, the activation energy of which decreased as the electronegativity of the Si substituents was increased. In contrast to what one might expect from the presence of long, and therefore presumably weak, Si-C bonds in I (1.910(5) Å [37]) and II (1.923(3) Å [38]), no homolytic Si-C cleavage was detected.

The identities of the thermolysis products have been determined, and their formation can be fully acounted for in terms of secondary reactions involving

	ð(F(Si))	δ(F(C))	δ(H(Si))	δ(H(C))	² J(HSiF)	² J(FCH)	³ J(FCSiF)	³ J(HCSiF)	³ J(FCSiH)	³ J(HCSiH)
CF ₃ SiF ₃ "	- 150.7	- 66.3					0.11			
CF ₃ SiHF ₂	-150.0	-70.3	4.89		64.8		6.4		3.8	
CF ₃ SiH ₂ F	-201.3	- 66.4	4.88		47.3		< 0.3		5.8	
CF ₃ SiH ₃		- 55.2	3.92						7.5	
$(CF_3)_2SiH_2^{h}$		56.7	4.41						6.1	
CHF ₂ SiF ₃	- 147.8	- 142.6		5.86		44.6	4.4	2.7		
CHF ₂ SiHF ₂	- 149.1	- 144.9	4.65	5.71	64.6	45.1	5.1 ^c	0.7	1.5	2.0
CHF ₂ SiH ₂ F	-203.6	- 142.8	4.77	6.03	47.3	45.8	< 0.1	0.4	7.1 ^c	1.7
CHF ₂ SiH ₃		- 128.9	3.85	6.14		46.0			11.0	1.8
$(CHF_2)_2SiH_2^d$		-131.8	4.08	6.18		45.5			9.3 °	1.9
$(CHF_2)(CF_3)SiH_2$		- 132.2	4.25	6.22		45.5			8.1 /	~ 1.7
		- 56.4							6.5 8	
CH ₂ FSiF ₃	- 142.8	-285.0		4.53		46.8	5.2	3.2		
CH ₂ FSiHF ₂	- 145.9	- 285.2	4.77	4.40	65.3	47.0	4.0	3.9 °	2.4	1.0
$(CH_2F)_2SiF_2$	-148.3	- 284.5		4.52		47.0	3.4	ų		
(CH ₂ F)CH ₃ SiF ₂ ¹	-140.0	-281.2		4.37		47.1	3.2	6.2. 1.7		
				0.36				6.4 ^k		
$(CH_2F)(CF_3)SiH_2'$		- 271.6 - 57.6	4.18	4.69		46.7			13.8 m 6 6 ^g	2.7 °
(CH, F), SiH,		- 269.5	3.9	4.66		46.9			14,4	2.9 °
CH ₂ FSiH ₃		- 265.0	3.63	4.61		46.7			14.7	3.5
CH ₂ F(CHF ₂)SiH ₂ "		- 271.1	F	4.75		46.8			14.1	2.8 °
		-132.5		I		45.9			9.7	I
^a Ref. 1a. ^b ⁴ J(FCS) ^f ³ J(F ₂ CHSiH) . ^s ⁴ J(FCSiCF) 3.0 H.	CF) 4.1 Hz 3J(F ₃ CSiH) 2. ^m ³ J(FCH	z. ⁶ Mean co . ^h Couplin 1 ₂ SiH) . ⁿ	oupling const ug constant ⁴ J(FCSiCF)	ant. $\frac{d}{d} {}^{4}J(F)$ not detern 1.5 Hz.	CSiCF) 3.7 F uined. ⁴ ⁴ J(FC	iz, ⁴ J(FCSiCF SiCH) 1.1 1	⁷ ') 2.1 Hz, ⁴ / Hz. ⁷ ³ /(H ₂ CF9	$ HCSiCF\rangle 0.4 H$ $ 3/(H_2CF) , 3/(H_2CF) $	z, see text. " ¹ / SiF') see tex	$(FCSiCF) 3.7 Hz.t. ^{k} ^{3}J(H_{3}CSiF) .$

Table 4 NMR data for α -fluoromethylsilanes (δ in ppm, J in Hz)

214

Scheme 1. Thermolysis of CF₃SiH₃, identified species are underlined.

carbone elimination and insertion. The CF_2 insertion into an Si-H bond, which has been established for the first time in the present study, has a key function in the decomposition mechanism; its potential for the selective synthesis of CHF_2Si derivatives is at present under investigation in our laboratory.

The elimination/insertion sequence continues as shown in Scheme 1, and the carbenes CF_2 and CHF have been trapped with cyclohexene, although the thermal instability of difluoromethylsilanes, which lose CHF, prevented their detection from thermolysis at ≥ 210 °C (Tables 2 and 3). On the other hand, while there is no evidence for free CH₂ as a reaction intermediate, we do not think that CH₃Si derivatives can be formed by any mechanism other than CH₂ elimination from a CH₂FSi precursor and insertion into an Si-H bond. Formally, a dyotropic rearrangement according to eq. 14, which has been observed as one of two path-

$$CH_2FSiHX_2 \xrightarrow{\Delta} H_2C \xrightarrow{\dots H_2} SiX_2 \longrightarrow CH_3SiX_2F \qquad X = H, F \qquad (14)$$

ways in the isomerization of $CH_2ClSi(CH_3)_2H$ to $(CH_3)_3SiCl$ [39], would offer an alternative route.

Insertions of CF₂ have received little attention [40,41,18], while the addition of carbenes to alkenes has been studied in great detail. The selectivity in olefin addition reactions of CF₂ has been compared with that of other dihalocarbenes and O(3*p*) atoms [20], and a model for the addition process based on ab initio calculations has been proposed [42]. The experimentally observed electrophilicity of CF₂ is not consistent with the character following from the philicity parameter, which places CF₂, $m(CF_2) = 1.47$ [43], between the ambiphilic carbene C(OMe)Ph, m = 1.34, and the nucleophilic C(OMe)₂, m = 2.22 [43].

Insertion reactions of the singlet carbones CCl_2 and CBr_2 into the Si-H bonds of optically active silane have been shown to be stereoselective, and a concerted mechanism with a three-center transition state was postulated [44]. In agreement with their electrophilic character, CCl_2 and CBr_2 [23], as well as $CF(CHF_2)$ [45],

react with increasing ease into Si-H as the electron-releasing character of the remaining silicon substituents is increased. In contrast, CF₂ inserts readily into H₃SiF but not into Me₃SiH [10] and II. Operation of a different reaction mechanism for CF₂ could account for this difference. The large singlet/triplet energy separation, ~ 240 kJ mol⁻¹ [46], makes the participation of triplet-CF₂ in the insertion process unlikely. A two step mechanism, with H abstraction prior to the formation of the above mentioned three-center transition state, would be in agreement with the experimental results. While the Si-H bond dissociation energies of Me₃SiH (376 ± 11 kJ mol⁻¹ [47]) and H₃SiF (calc. 375.1 kJ mol⁻¹ [48]) are not significantly different, the greater polarity of the Si⁸⁺-H⁸⁻ bond in H₃SiF would facilitate electrophilic attack on this H atom by CF₂. Such radical reactions of singlet carbenes have been demonstrated by CIDNP NMR spectroscopy [49]. A two-step process, comprising an initial eletrophilic H abstraction and a subsequent phase to form the three-center transition state, is supported by ab initio calculations

 $\begin{array}{c} R_{3}Si \underbrace{\cdots}_{X} C \underbrace{\cdot}_{X} \\ K \end{array}$

of the insertion of carbenes into E-H bonds (E = Si, Ge) [50]. According to these calculations the higher electronic stability of CF₂ than of the more reactive species CCl₂ and CBr₂ implies that in the transition state there is nucleophilic interaction of the σ HOMO of CF₂ with the σ^* LUMO mostly localized at the Si atom. In accord with this reasoning, the unexpectedly lower reactivity of CF₂ can be attributed to a nucleophilicity greater than that of CCl₂ and CF(CHF₂).

An important outcome of the present investigation is the possibility of selectively synthesizing CHF_2Si derivatives, which are difficult to prepare by other routes, by CF_2 insertion into SiH bonds, and to use these species as precursors for CHF, convenient sources of which are still lacking [6].

Experimental

Volatile materials were handled in a vacuum system equipped with greaseless valves. Gas volumes were determined by use of a MKS Baratron pressure gauge. Spectra were recorded with the following instruments: ¹H and ¹⁹F NMR: Varian EM 390 operating at 90.00 and 84.67 MHz, Bruker AC 250 operating at 250.00 and 235.36 MHz, IR: Perkin Elmer 580 B, 400–4000 cm⁻¹, 10 cm gas cell.

Starting material

Compounds I and II were synthesized by published methods [3], while III was obtained by reduction of $(CF_3)_2$ SiHBr.

Bis(trifluoromethyl)bromosilane. To 35.4 g (133 mmol) of $(CF_3)_2Si(H)N(i-Pr)_2$ [4], 33.6 g (133 mmol) of BBr₃ were added dropwise at 0 ° C. The mixture was kept at room temperature for 2 days, then the more volatile compound $(CF_3)_2SiHBr$, b.p. 34 ° C (160 mmHg) was condensed and in vacuo (yield 92%, purity $\ge 95\%$), and the remaining was identified as Br₂BN(i-Pr)₂. IR (cm⁻¹): 2247 s, PQR, $\Delta\nu(PR)$ 10 cm⁻¹, 1222 s, 1207 vs, 1177 m, 1133 vs, 1102 s, 770 vs, 732 s, 729 s, 539 m, 494 s, 448 s, 406 s, PQR. NMR: ¹⁹F, int. std. CFCl₃, $\delta(CF_3) - 62.5$ ppm, $|^{3}J(FH)|$ 4.8 Hz, $|^{2}J(F^{29}Si)|$ 59.3 Hz; ¹H, int. std. TMS, $\delta(SiH)$ 5.06 ppm, $|^{1}J(H^{29}Si)|$ 280.9 Hz, Bis(trifluoromethyl)silane(III). To a suspension of 0.5 g (13.2 mmol) LiAlH₄ in 70 ml di-n-butylether at -78 °C, 11.0 g (45 mmol) (CF₃)₂SiHBr were added dropwise. The mixture was warmed to 0 °C and stirred for 10 min. Volatile products were evaporated off and the material collected in a -150 °C trap was distilled through a 50 cm slit tube column to give III, b.p. 5 °C (760 mmHg), 28% yield, along with 3.4 g of unchanged (CF₃)₂SiHBr₂. IR (cm⁻¹): 2249 s, 2233 sh, 1226 s, 1213 vs, PQR, 1167 m, 1127 vs, 1099 s, 1094 s, 917 s, 815 vs, PQR, 735 m, 601 m, 433 m, 417 m. NMR see Table 4.

Thermolysis of II

The low pressure thermolysis was carried out by heating 0.5 mmol of II in a 50 ml glass ampoule for 2-5 h at a temperature which was increased stepwise from 60 to 210 °C. At each step the composition of the gaseous products was examined by IR spectroscopy, and a first indication of decomposition products was observed after heating to 180 °C for 5 h. Decomposition was complete after 15 h at 210 °C. The decomposition in the presence of cyclohexene and HBr was performed similarly; details are given in Tables 1 and 2.

In the high pressure thermolysis 0.9 mmol of II were sealed in a glass tube of 3.2 mm i.d. having a volume of 0.5 ml and heated to 240 °C for 6 h. The extrapolated pressure was ca. 40 bar. Gaseous decomposition products were investigated by NMR spectroscopy (Table 2).

Dynamic decomposition of II was studied by passing II slowly through a heated glass tube at a pressure of 10^{-3} mbar; the products (H₃SiF and C₂F₄) were separated from unchanged II by fractional condensation in vacuo. In contrast, II was decomposed almost completely at 160°C, when passed through a glass tube containing dried KF (Table 2).

Reaction of CF_3SiF_3 with H_3SiF : CF_2 insertion

2 mmol of a mixture consisting of 49 mol% H_3SiF and 51 mol% I was sealed in a 35 ml Pyrex ampoule and kept at 82°C for 2 h. The CF₂ insertion products were collected in a -120°C trap and thereby separated from more volatile material. Both fractions were investigated by NMR and IR spectroscopy. The -120°C trap contained IV, purity > 95%, yield 55% (63% with regard to consumed H_3SiF), while the more volatile material consisted of I, H_3SiF , SiF₄ and, with respect to consumed H_3SiF , $\sim 12\%$ H_2SiF_2 and < 1% HSiF₃. In a similar reaction carried out at 102°C for 1 h, the yield of insertion products was increased to 67%, and $\sim 1\%$ of C_2F_4 was found in the more volatile fraction.

Difluoromethylfluorosilane (IV). b.p. 45 °C (760 mmHg), M, found 102.3, (calcd. 100.12, by gas density) [51]. IR (cm⁻¹) 2934s, 2234vs, 2221vs, PQR, 1400m, 1328m, PQR, $\Delta \nu$ (PR) 15 cm⁻¹, 1098s, 1034vs, PR, $\Delta \nu$ (PR) 9 cm⁻¹, 956s, PQR, $\Delta \nu$ (PR) 16 cm⁻¹, 933sh, 913vs, PQR, $\Delta \nu$ (PR) 14 cm⁻¹, 863s, PQR, $\Delta \nu$ (PR) 16 cm⁻¹, 721s, PQR, 601s, 502s, PQR. NMR see Table 4.

Thermolysis of IV in the presence of II

Two samples, each consisting of 0.6 mmol IV and 0.6 mmol II, were sealed in 4 mm o.d. glass tubes, volume 1 ml, and kept for 1 h at 120 and 150 °C respectively. Analysis by NMR spectroscopy indicated complete decomposition of IV in both cases. At 120 °C, 61% of CHF₂SiH₃ and 26% of CHF₂SiF₃, formed by dismutation,

were found, along with 5% (CHF₂)₂SiH₂. Thermolysis at 150 °C yielded CHF₂SiH₃ (51%), HSiF₃ (17%), (CHF₂)₂SiH₂ (8%), CHF₂SiF₃ (4%) and, by insertion of CHF, CH₂FSiF₃ (9%) and CH₂F(CHF₂)SiH₂ (4%). In addition, 13% of II was converted into CH₂F(CF₃)SiH₂. CH₂F(CHF₂)SiH₂, ¹⁹F NMR: δ (CHF₂) – 132.5 ppm, |²J(FH)| 45.9 Hz, |³J(FH)| 9.7 Hz, |⁴J(FF)| 1.5 Hz, δ (CH₂F) – 271.1 ppm, |²J(FH)| 46.8 Hz, |³J(FH)| 14.1 Hz, |⁴J(FF)| 1.5 Hz; ¹H NMR: δ (CH₂F) 4.75 ppm, |²J(HF)| 46.8 Hz, |³J(HH)| 2.8 Hz. CHF₂ and SiH₂ signals were hidden under stronger signals from other compounds.

Thermolysis of III

The thermolysis of III was performed as described for II. Details are given in Table 3. Increase in the time of reaction of III with HBr at 123° C from 92 to 122 min changed the CF₃SiH₂F/H₂SiF₂ ratio from 5.5/1 to 0.9/1. The CF₃SiH₂F was always contaminated with some CHF₂Br, which could not be separated by repeated fractional condensation. CF₃SiH₂F, IR (cm⁻¹): 2248s, PQR, 2240sh, 1238s, PR, 1109vs, 959s, PR, 916vs, PQR, $\Delta\nu$ (PR) 13 cm⁻¹, 871s, PQR, $\Delta\nu$ (PR) 13 cm⁻¹, 718m (CHF₂Br), 641s, 498m, 412s, PQR.

Acknowledgements

We thank Professor R. Eujen for valuable comments and help. Support by the Fonds der Chemie is gratefully acknowledged.

References

- 1 (a) K.G. Sharp and T.D. Coyle, J. Fluorine Chem., 1 (1971) 249; (b) J.L. Margrave, K.G. Sharp and P.W. Wilson, J. Inorg. Nucl. Chem., 32 (1970) 1817.
- 2 I. Ruppert, K. Schlich and W. Volbach, Tetrahedron Lett., 25 (1984) 2195.
- 3 H. Beckers, H. Bürger, P. Bursch and I. Ruppert, J. Organomet. Chem., 316 (1986) 41.
- 4 H. Beckers, H. Bürger and R. Eujen, Z. Anorg. Allgem. Chem., 563 (1988) 38.
- 5 G. Pawelke, J. Fluorine Chem., 42 (1989) 429.
- 6 D.J. Burton and J.L. Hahnfeld, Fluorine Chem. Rev., 8 (1977) 119.
- 7 D. Seyferth, in R.A. Moss and M. Jones, Jr., (Eds.), Carbenes, Vol. II, Wiley, New York (1975).
- 8 D. Seyferth and S.P. Hopper, J. Org. Chem., 37 (1972) 4070.
- 9 W.R. Cullen, J.R. Sams and M.C. Waldman, Inorg. Chem., 9 (1970) 1682.
- 10 K.G. Sharp and T.D. Coyle, Inorg. Chem., 11 (1972) 1259.
- 11 K.G. Sharp, Inorg. Chem., 14 (1975) 1241.
- 12 M. Weidenbruch, Chem. Ztg., 97 (1973) 355.
- 13 G. Fritz and H. Bauer, Angew. Chem., 95 (1983) 740.
- 14 C.-D. Pein and D. Cech, Z. Chem., 25 (1985) 328.
- 15 R. Eujen, R. Mellies and E. Petrauskas, J. Organomet. Chem., 299 (1985) 29.
- 16 A. Morimoto, T. Miura, M. Kumeda and T. Shimizu, Jpn. J. Appl. Phys., 22 (1983) 908.
- 17 H. Beckers, H. Bürger and R. Eujen, J. Fluorine Chem., 27 (1985) 461.
- 18 S.V. Mel'nikovich and F.B. Moin, Kinet. Katal., 28 (1987) 181.
- 19 T. Ando, H. Yamanaka, F. Namigata and W. Funuraka, J. Org. Chem., 35 (1970) 33.
- 20 R.A. Mitsch and A.S. Rogers, Int. J. Chem. Kin., 1 (1969) 439.
- 21 J.W. Simons and C.J. Mazac, Can. J. Chem., 45 (1967) 1717.
- 22 C.J. Mazac and J.W. Simons, J. Am. Chem. Soc., 90 (1968) 2484.
- 23 D. Seyferth, Pure Appl. Chem., 23 (1970) 391.
- 24 G. Fishwick, R.N. Haszeldine, C. Parkinson, P.J. Robinson and R.F. Simmons, J. Chem. Soc., Chem. Commun., (1965) 382.
- 25 G.J. Chen and C. Tamborski, J. Organomet. Chem., 293 (1985) 313.

- 26 J. Dyer and J. Lee, Trans. Faraday Soc., 62 (1966) 257.
- 27 R.J. Abraham and H.J. Bernstein, Can. J. Chem., 39 (1961) 216.
- 28 J.C. Thompson, A.P.G. Wright and W.F. Reynolds, J. Fluorine Chem., 17 (1981) 509.
- 29 R. Cahill, R.C. Cookson and T.A. Crabb, Tetrahedron, 25 (1969) 4681.
- 30 K.G. Sharp, S. Li and R.B. Johannesen, Inorg. Chem., 15 (1976) 2295.
- 31 H. Schmidbaur, Chem. Ber., 97 (1964) 1639.
- 32 R.J. Lagow and J.A. Morrison, Adv. Inorg. Chem. Radiochem., 23 (1980) 177.
- 33 R.E. Aikman and R.J. Lagow, Inorg. Chem., 21 (1982) 524.
- 34 J. Schraml, J. Vcělák, G. Engelhardt and V. Chvalovski, Coll. Czech. Chem. Commun., 41 (1976) 3758.
- 35 R.N. Haszeldine, R.J. Robinson and W.J. Williams, J. Chem. Soc., Perkin II, (1973) 1013.
- 36 R.N. Haszeldine, C. Parkinson and P.J. Robinson, J. Chem. Soc., Perkin II, (1973) 1018.
- 37 B. Rempfer, G. Pfafferott, H. Oberhammer, H. Beckers, H. Bürger, R. Eujen and J.E. Boggs, Rev. Chim. Min., 23 (1986) 551.
- 38 H. Beckers, H. Bürger, R. Eujen, R. Rempfer and H. Oberhammer, J. Mol. Struct., 140 (1986) 281.
- 39 J.G. Martin, M.A. Ring and H.E. O'Neal, Organometallics, 5 (1986) 1228.
- 40 C. Sosa and H.B. Schlegel, J. Am. Chem. Soc., 106 (1984) 5847.
- 41 K. Sugawara, T. Nakanaga, H. Takeo and C. Matsumura, Chem. Phys. Lett., 134 (1987) 347.
- 42 K.N. Houk, N.G. Rondan and J. Mareda, Tetrahedron, 61 (1985) 1555.
- 43 R.A. Moss, S. Shen, L.H. Hadel, G. Kmiecik-Lawrynowicz, J. Wlostowska and K. Krogh-Jespersen, J. Am. Chem. Soc., 109 (1987) 4341.
- 44 L.H. Sommer, L.A. Ulland and G.A. Parker, J. Am. Chem. Soc., 94 (1972) 3469.
- 45 R.N. Haszeldine, A.E. Tipping and R.O'B. Watts, J. Chem. Soc., Perkin Trans. I, (1974) 2391.
- 46 E.A. Carter and W.A. Goddard III, J. Chem. Phys., 88 (1988) 1752.
- 47 H.B. Schlegel, J. Phys. Chem., 88 (1984) 6254.
- 48 T.N. Bell, K.A. Perkins and P.G. Perkins, J. Chem. Soc., Faraday Trans. 1, 77 (1981) 1779.
- 49 H.D. Roth, Acc. Chem. Res., 10 (1977) 85.
- 50 M.S. Gordon and D.R. Gano, J. Am. Chem. Soc., 106 (1984) 5421.
- 51 P. Moritz, Diplomarbeit, Wuppertal 1989.